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Plan of Lectures

1. What is dust? - Fitting, coarse-graining and averaging

2. Approaches to coarse-graining, averaging and
backreaction

3. Timescape cosmology

4. Observational tests of the timescape cosmology

5. Variance of the Hubble flow
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Lecture 1

What is dust?
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What is “dark energy”?

Usual explanation: a homogeneous isotropic form of
“stuff” which violates the strong energy condition.
(Locally pressure P = wρc2, w < −1

3 .)
Best-fit close to cosmological constant, Λ, w = −1.

Cosmic coincidence: Why now? Why ΩΛ0 ∼ 2ΩM0, so
that a universe which has been decelerating for much of
its history began accelerating only at z∼ 0.7?

Onset of acceleration coincides also with the nonlinear
growth of large structures

Are we oversimplifying the geometry?

Hypothesis: must understand nonlinear evolution with
backreaction, AND gravitational energy gradients within
the inhomogeneous geometry
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6df: voids & bubble walls (A. Fairall, UCT)
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From smooth to lumpy

Universe was very smooth at time of last scattering;
fluctuations in the fluid were tiny (δρ/ρ∼ 10−5 in photons
and baryons; ∼ 10−4,10−3 in non–baryonic dark matter).

FLRW approximation very good early on.

Universe is very lumpy or inhomogeneous today.

Recent surveys estimate that 40–50% of the volume of
the universe is contained in voids of diameter 30h−1

Mpc. [Hubble constant H0 = 100h km/s/Mpc] (Hoyle &
Vogeley, ApJ 566 (2002) 641; 607 (2004) 751)

Add some larger voids, and many smaller minivoids,
and the universe is void–dominated at present epoch.

Clusters of galaxies are strung in filaments and bubbles
around these voids.
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Coarse-graining, averaging, backreaction

Coarse-graining: Replace the the microphysics of a
given spacetime region by some collective degrees of
freedom sufficient to describe physics on scales larger
than the coarse-graining scale. BOTTOM UP.

Averaging: Consider overall macroscopic dynamics and
evolution, without direct consideration of the details of
the course-graining procedure. TOP DOWN.

Often assumes the existence of a particular average,
e.g., FLRW background, without showing that such
an average exists.
Backreaction: Consider the effects of departures
from the average, perturbative or nonperturbative, on
the average evolution.
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Fitting problem (Ellis 1984)

On what scale are Einstein’s field equations (EFEs)
valid?

Gµν =
8πG

c4
Tµν

Scale on which matter fields are coarse–grained to
produce the energy–momentum tensor on r.h.s. not
prescribed

general relativity only well tested for isolated systems –
e.g., solar system or binary pulsars – for which Tµν = 0

Usual approach: just pretend

Other approaches: cut and paste exact solutions, e.g.,
Einstein-Straus vacuole (1946) → Swiss cheese
models; LTB vacuoles → meatball models
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Layers of coarse-graining in cosmology

1. Atomic, molecular, ionic or nuclear particles
coarse-grained as fluid in early universe, voids, stars etc

2. Collapsed objects – stars, black holes coarse-grained
as isolated objects;

3. Stellar systems coarse-grained as dust particles within
galaxies;

4. Galaxies coarse-grained as dust particles within
clusters;

5. Clusters of galaxies as bound systems within
expanding walls and filaments;

6. Voids, walls and filaments combined as regions of
different densities in a smoothed out expanding
cosmological fluid.
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Coarse-graining: first steps

(1) → (2) (fluid → universe, star etc): Realm of EFEs
“matter tells space how to curve” – well-established for
early universe; vacuum geometries; starting point for
defining neutron stars etc

(2) → (3) (isolated Schwarzschild, Kerr geometry →
particle in fluid):

Replace Weyl curvature → Ricci curvature
No formal coarse-graining solution; but reasonable
to assume possible in terms of ADM-like mass (see,
e.g., Korzyński 2010)
Even for 2 particles, gravitational energy (binding
energy etc) necessarily involved
Neglect inter-particle interactions → dust
approximation
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Coarse-graining: further steps

(2) → (3) (stars, gas → galaxies):
Newtonian gravity usually assumed
Cooperstock and Tieu (2006,2007): claimed
non-Newtonian properties possible for rigidly rotating
dust (van Stockum metrics)
Neill and DLW (in preparation): new van Stockum
metrics for empirically observed density profiles do
not solve galaxy rotation curve problem

(3) → (4) (galaxies → galaxy clusters):
Newtonian gravity, viral theorem usually assumed
Virial theorem studied formally only in GR
Realistic solutions not known; given Lemaître–
Tolman–Bondi (LTB) solutions inapplicable
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Coarse-graining: final steps

(4) → (5) (bound galaxy clusters → expanding
walls/filaments)

New ingredient: expanding space

(1) + (5) → (6) (voids + walls/filaments → universe)
New ingredient: “building blocks” themselves are
expanding

Effective hierarchy

gstellar

µν → ggalaxy

µν → gcluster

µν → gwall

µν
...

gvoid

µν











→ guniverse

µν

How does 〈Tµ
ν(g

x

µν)〉 → Tµ
ν(g

y

µν) at each step?
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Dilemma of gravitational energy. . .
In GR spacetime carries energy & angular momentum

Gµν =
8πG

c4
Tµν

On account of the strong equivalence principle, Tµν

contains localizable energy–momentum only

Kinetic energy and energy associated with spatial
curvature are in Gµν : variations are “quasilocal”!

Newtonian version, T − U = −V , of Friedmann equation

ȧ2

a2
+

kc2

a2
=

8πGρ

3

where T = 1
2mȧ2x2, U = −1

2kmc2x2, V = −4
3πGρa2x2m;

r = a(t)x.
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Dilemma of gravitational energy. . .
Each step of coarse-graining hierarchy involves
coarse-graining gravitational degrees of freedom

How do we define coarse-grained averages?

〈Gµ
ν〉 = 〈gµλRλν〉 − 1

2δµ
ν〈gλρRλρ〉 =

8πG

c4
〈Tµ

ν〉

How do we relate coarse-grained “particle” mass etc to
sub-system masses, angular momenta etc?

How do we relate metric invariants (rulers, clocks) of
subsystem to those of coarse-grained system?

FLRW model success with ΩC0 = ΩM0 − ΩB0, ΩΛ0,
suggests simplifying physical principles to be found

Steps 2 to 5 in hierarchy may shed light on dark matter;
steps 5 to 6 on dark energy (only consider latter here)
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What is a cosmological particle (dust)?
In FLRW one takes observers “comoving with the dust”

Traditionally galaxies were regarded as dust. However,
Neither galaxies nor galaxy clusters are
homogeneously distributed today
Dust particles should have (on average) invariant
masses over the timescale of the problem

Must coarse-grain over expanding fluid elements larger
than the largest typical structures

ASIDE: Taking galaxies as dust leads to flawed
argument against backreaction (Peebles 0910.5142)

ΦNewton(galaxy)∼ v2
gal/c

2 ∼ 10−6

ΛCDM self-consistent; but galaxies, clusters do not
justify FLRW background
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Sandage-de Vaucouleurs paradox

Matter homogeneity only observed at >∼ 100/h Mpc
scales

If “the coins on the balloon” are galaxies, their peculiar
velocities should show great statistical scatter on scale
much smaller than ∼ 100/h Mpc

However, a nearly linear Hubble law flow begins at
scales above 1.5–2 Mpc from barycentre of local group.

Moreover, the local flow is statistically “quiet”; despite a
possible 65/h Mpc Hubble bubble feature.

Peculiar velocities are isotropized in FLRW universes
which expand forever (regardless of dark energy); but
attempts to explain the paradox not a good fit to ΛCDM
parameters (Axenides & Perivolaropoulos 2002).
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Largest typical structures

Survey Void diameter Density contrast
PSCz (29.8 ± 3.5)h−1Mpc δρ = −0.92 ± 0.03

UZC (29.2 ± 2.7)h−1Mpc δρ = −0.96 ± 0.01

2dF NGP (29.8 ± 5.3)h−1Mpc δρ = −0.94 ± 0.02

2dF SGP (31.2 ± 5.3)h−1Mpc δρ = −0.94 ± 0.02

Dominant void statistics in the Point Source Catalogue Survey (PSCz), the Updated
Zwicky Catalogue (UZC), and the 2 degree Field Survey (2dF) North Galactic Pole
(NGP) and South Galactic Pole (SGP), (Hoyle and Vogeley 2002,2004). More
recent results of Pan et al. (2011) using SDSS Data Release 7 similar.

Particle size should be a few times greater than largest
typical structures (voids with δρ ≡ (ρ − ρ̄)/ρ̄ near -1)

Coarse grain dust “particles” – fluid elements – at Scale
of Statistical Homogeneity (SSH) ∼ 100/h Mpc
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Scale of statistical homogeneity
Coincides roughly with Baryon Acoustic Oscillation
(BAO) scale

Using Friedmann equation for pressureless dust

a2
0
H2

0
(ΩM0 − 1) = a2(t)H2(t)[ΩM (t) − 1]

with δt ≡ δρ/ρ = ΩM (t) − 1 ≃ A × 10−4 at z = 1090,
t = 380 kyr when H ≃ 2/(3t), estimate on scales > SSH

δ0 ≡
(

δρ

ρ

)

0

≃
(

H

H0

)2
δt

(1 + z)2
≃ 0.025A

h2

δ0 = 6% if A = 1, h = 0.65

Measurement 7% (Hogg et al, 2005), 8% (Sylos Labini
et al, SDSS-DR7 2009)
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Scale of statistical homogeneity
ASIDE: Sylos-Labini et al define SSH as δρ/ρ → 0, and
disagree with Hogg et al who find SHS at >∼ 70/h Mpc
(but fractal dimension D ≃ 2 for galaxy distribution up to
at least 20/h Mpc)

Inflation and cosmic variance imply some large scale
variation in average density, bounded on scales > SSH

BAO feature observed in linear regime of FLRW
perturbation theory implying SSH <∼ BAO scale

On scales below BAO scale density perturbations
δt = A × 10−4 amplified by acoustic waves, more so the
smaller the scale, eventually becoming nonlinear

Speculation: dominant void scale, diameter 30/h Mpc, is
a rarefaction amplification set by 2nd acoustic peak?
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Lecture 2

Approaches to coarse-graining,
averaging and backreaction
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I. Coarse-graining at SSH

In timescape model we will coarse-grain “dust” at SSH

Scale at which fluid cell properties from cell to cell
remain similar on average throughout evolution of
universe

Notion of “comoving with dust” will require clarification

Variance of expansion etc relates more to internal
degrees of freedom of fluid particle than differences
between particles

Coarse-graining over internal gravitational degrees of
freedom means that we no longer deal with a single
global geometry: description of geometry is statistical
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Coarse-graining: other approaches
Lindquist-Wheeler (LW) (1959) lattice model: continuum
FLRW model is only realised as an approximation

Like Swiss cheese it assumes a simplified hierarchy

gsph symmetric

µν → guniverse

µν

Clifton & Ferreira studied light propagation in the
spatially flat LW model, and initially concluded
1 + z ≃ (1 + z

FLRW
)7/10.

However, after correcting a numerical error, the results
were no different to the standard Friedman case
(Clifton, Ferreira & O’Donnell, arXiv:1110.3191)

Symmetry implies Friedmann evolution still; like Swiss
cheese this limits the metric of the universe
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Korzyński’s covariant coarse-graining
Isometrically embed the boundary of a comoving
dust-filled domain (with S2 topology, positive scalar
curvature) into a three-dimensional Euclidean space

Construct a “fictitious” 3-dimensional fluid velocity which
induces the same infinitesimal metric deformation on
the embedded surface as “true” flow on domain
boundary original spacetime

Use velocity field to uniquely assign coarse-grained
expressions for the volume expansion and shear.
Using pushforward of ADM shift vector similarly obtain a
coarse-grained vorticity.

Coarse-grained quantities are quasilocal functionals
which depend only on the geometry of the domain
boundary. Class. Quan. Grav. 27 (2010) 105015
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II. Averaging and backreaction

In general 〈Gµ
ν(gαβ)〉 6= Gµ

ν(〈gαβ〉)
〈Gµ

ν〉 need not be Einstein tensor for an exact geometry

〈Gµ
ν〉 = 〈gµλRλν〉 − 1

2δµ
ν〈gλρRλρ〉 =

8πG

c4
〈Tµ

ν〉(1)

E.g., Zalaletdinov (1992,1993) works with the average
inverse metric 〈gµν〉 and the average Ricci tensor 〈Rµν〉,
and writes

〈gµλ〉〈Rλν〉 − 1
2δµ

ν〈gλρ〉〈Rλρ〉 + Cµ
ν =

8πG

c4
〈Tµ

ν〉 ,(2)

Correlation functions Cµ
ν defined by difference of the

l.h.s. of (1) and (2): these are backreaction terms
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Averaging and backreaction
Alternatively define gµν = ḡµν + δgµν , where ḡµν ≡ 〈gµν〉,
with inverse ḡλµ 6= 〈gλµ〉
Determine a connection Γ̄λ

µν , curvature tensor R̄µ
νλρ

and Einstein tensor Ḡµ
ν based on the averaged metric,

ḡµν , alone.

Differences δΓλ
µν ≡ 〈Γλ

µν〉 − Γ̄λ
µν ,

δRµ
νλρ ≡ 〈Rµ

νλρ〉 − R̄µ
νλρ, δRµν ≡ 〈Rµν〉 − R̄µν etc, then

represent the backreaction

Average EFEs (1) may be written

Ḡµ
ν + δGµ

ν =
8πG

c4
〈Tµ

ν〉

Processes of averaging and constructing Einstein
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Approaches to averaging

Three main types

1. Perturbative schemes about a given background
geometry;

2. Spacetime averages;

3. Spatial averages on hypersurfaces based on a 1 + 3
foliation.

Perturbative schemes deal with weak backreaction

Approaches 2 and 3 can be fully nonlinear giving strong
backreaction

No obvious way to average tensors on a manifold, so
extra assumptions or structure needed
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Approach 1: Weak backreaction
Much argument about backreaction from perturbation
theory near a FLRW background (e.g., Kolb et al. 2006)

Deal with gradient expansions of potentials and
densities

Debate is largely about mathematical consistency, and
conclusions vary with assumptions made

Debate shows there is a problem – perturbation theory
does not converge – and if backreaction changes the
background, then any single FLRW model may simply
be the wrong background at present epoch

Many reviews; e.g., Clarkson, Ellis, Larena and Umeh,
Rep. Prog. Phys. 74 (2011) 112901 [arXiv:1109.2484];
Kolb, Class. Quan. Grav. 28 (2011) 164009
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Approach 2: Spacetime averages
Any process of taking an average will in general break
general covariance

If average cosmological geometry on scales no longer
satisfies EFEs, need to revisit the role of general
covariance plays in defining spacetime structure on the
largest scales from first principles

How do coordinates of a “fine–grained manifold” relate
to those of an average “coarse–grained manifold”?

Zalaletdinov views general covariance as paramount;
he introduces additional mathematical structure to
perform averaging of tensors covariantly

Aim: consistently average the Cartan equations from
first principles, in analogy to averaging of microscopic
Maxwell–Lorentz equations in electromagnetism
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Zalaletdinov’s macroscopic gravity
Define bilocal averaging operators, Aµ

α(x, x′), with
support at two points x ∈ M and x′ ∈ M
Construct a bitensor extension, T

µ
ν(x, x′), of tensor

Tµ
ν(x) according to

T
µ

ν(x, x′) = Aµ
α′(x, x′)Tα′

β′(x′)Aβ′

ν(x
′, x) .

Integrates bitensor extension over a 4-dimensional
spacetime region, Σ ⊂ M, with volume VΣ, to obtain
regional average

Tµ
ν(x) =

1

VΣ

∫

Σ
d4x′

√

−g(x′)Tµ
ν(x, x′),

Bitensor transforms as a tensor at each point but is a
scalar when integrated for regional average.
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Zalaletdinov’s macroscopic gravity
Mathematical formalism which in the average bears a
close resemblance to general relativity itself

Macroscopic scale is assumed to be larger than the
microscopic scale, there is no scale in the final theory

Issues of coarse-graining of gravitational d.o.f. in
cosmological relativity may make the problem subtly
different

Cosmological applications of Zalaletdinov’s formalism
need additional assumptions

Assume a spatial averaging limit (Paranjape and
Singh 2007)
Assume the average is FLRW: correlation tensors
then take form of a spatial curvature (Coley, Pelavas
& Zalaletdinov 2005)
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Approach 3: Spatial averages
Average scalar quantities only; e.g., given a congruence
of observers, with tangent vector Uµ, and projection
operator hµ

ν = δµ
ν + UµUν then with Bµν ≡ ∇µUν ,

acceleration aµ = Uν∇νU
µ, we have

B⊥
µν ≡ hλ

µhσ
νBλσ = Bµν + aµUν

θµν = hλ
µhσ

νB
⊥
(λσ) expansion

ωµν = hλ
µhσ

νB
⊥
[λσ] vorticity

θ = θµ
µ = ∇µUµ expansion scalar

σµν = θµν − 1
3hµνθ shear

Buchert approach, assume ωµν = 0. Flow is
hypersurface orthogonal, i.e., spacetime can foliated by
spacelike hypersurfaces Σt, in standard ADM formalism.
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The 3 + 1 decomposition

For a globally hyperbolic manifold, we can make a 3 + 1-split

ds2 = −ω
0 ⊗ ω

0 + gij(t,x) ω
i ⊗ ω

j ,

where

ω
0 = N (t,x) dt

ω
i = dxi + N i(t,x) dt.

N (t, xk) is the lapse function: measures difference
between coordinate time, t, and proper time, τ , on
curves normal to hypersurfaces Σt, nα = (−N , 0, 0, 0)

N i(t, xk) is the shift vector: measures the difference
between a spatial point, p, and the point reached by
following the normal n.
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The 3 + 1 decomposition

N idt

nµ

dx i

x +i dx i
x i

dτ = Ndt

Σ
t+dt

Σ
t

When P = 0, i.e., for dust, in Buchert scheme may
consistently choose

N i = 0: comoving coordinates

N = 1: normalised, nαnα = −1 (i.e., nµ ≡ Uµ)
15th Brazilian School on Cosmology and Gravitation, August 2012 – p.33/143



Buchert averaging
Average scalar quantities only on domain in spatial
hypersurface D ∈ Σt; e.g.,

〈R〉 ≡
(
∫

D

d3x
√

3gR(t,x)

)

/V(t)

where V(t) =
∫

D
d3x
√

3g, 3g ≡ det(3gij) = − det(4gµν).

Now
√

3g θ =
√

−4g∇µUµ = ∂µ(
√

−4g Uµ) = ∂t(
√

3g), so

〈θ〉 = (∂tV) /V

Generally for any scalar Ψ, get commutation rule

∂t〈Ψ〉− 〈∂tΨ〉 = 〈Ψθ〉− 〈θ〉〈Ψ〉 = 〈Ψ δθ〉 = 〈θ δΨ〉 = 〈δΨ δθ〉

where δΨ ≡ Ψ − 〈Ψ〉, δθ ≡ θ − 〈θ〉.
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Buchert-Ehlers-Carfora-Piotrkowska
-Russ-Soffel-Kasai-Börner equations

For irrotational dust cosmologies, with energy density,
ρ(t,x), expansion scalar, θ(t,x), and shear scalar, σ(t,x),
where σ2 = 1

2σµνσ
µν , defining 3 ˙̄a/ā ≡ 〈θ〉, we find average

cosmic evolution described by exact Buchert equations

3
˙̄a
2

ā2
= 8πG〈ρ〉 − 1

2〈R〉 − 1
2Q(3)

3
¨̄a

ā
= −4πG〈ρ〉 + Q(4)

∂t〈ρ〉 + 3
˙̄a

ā
〈ρ〉 = 0(5)

∂t

(

ā6Q
)

+ ā4∂t

(

ā2〈R〉
)

= 0(6)

Q ≡ 2

3

(

〈θ2〉 − 〈θ〉2
)

− 2〈σ2〉
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Backreaction in Buchert averaging
Kinematic backreaction term can also be written

Q = 2
3〈(δθ)2〉 − 2〈σ2〉

i.e., combines variance of expansion, and shear.

Eq. (6) is required to ensure (3) is an integral of (4).

Buchert equations look deceptively like Friedmann
equations, but deal with statistical quantities

The extent to which the back–reaction, Q, can lead to
apparent cosmic acceleration or not has been the
subject of much debate (e.g., Ishibashi & Wald 2006):

How do statistical quantities relate to observables?
What about the time slicing?
How big is Q given reasonable initial conditions?
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III. Average spatial homogeneity
Many approaches simply assume FLRW as average:

all perturbative calculations about the FLRW universe

any “asymptotically FLRW” LTB models with core
spherical inhomogeneity

the Dyer-Roeder (1974) approach

Swiss cheese and meatball models

specific cosmological studies of spatial averaging (Russ
et al 1997; Green & Wald 2011. . . )

specific cosmological studies of Zalaletdinov’s
macroscopic gravity (Coley et al 2005; Paranjape &
Singh 2007,2008; van den Hoogen 2009)

specific cosmological studies of general Constant Mean
(extrinsic) Curvature (CMC) flows (Reiris 2009,2009)
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Notions of average spatial homogeneity

How do we define average spatial homogeneity?

Assumption of FLRW average is restrictive, demanding
3 separate notions:
1. Average spatial homogeneity is described by class of

ideal comoving observers with synchronized clocks.
2. Average spatial homogeneity is described by

average surfaces of constant spatial curvature.
3. The expansion rate at which the ideal comoving

observers separate within the hypersurfaces of
average spatial homogeneity is uniform.

No need to demand all of these notions must hold
together
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Perturbative average homogeneity
Bardeen (1980) described gauge invariant FLRW
perturbations in different foliations which take one or
other property as more fundamental

comoving hypersurfaces (and related synchronous
gauge) embody (1)
minimal shear hypersurfaces (and related Newtonian
gauge) are one type of foliation related to (2)
uniform Hubble flow hypersurfaces embody (3)

Bičak, Katz & Lynden-Bell (2007) consider Machian
foliations (LIF coords uniquely determined by δTµ

ν):
uniform 3R hypersurfaces – embody (2)
minimal shear hypersurfaces
uniform Hubble flow hypersurfaces plus minimal shift
distortion gauge condition of Smarr and York (1978)
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Within a statistically average cell

Need to consider relative position of observers over
scales of tens of Mpc over which δρ/ρ∼−1.

GR is a local theory: gradients in spatial curvature and
gravitational energy can lead to calibration differences
between our rulers & clocks and volume average ones
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The Copernican principle

Retain Copernican Principle - we are at an average
position for observers in a galaxy

Observers in bound systems are not at a volume
average position in freely expanding space

By Copernican principle other average observers
should see an isotropic CMB

BUT nothing in theory, principle nor observation
demands that such observers measure the same mean
CMB temperature nor the same angular scales in the
CMB anisotropies

Average mass environment (galaxy) can differ
significantly from volume–average environment (void)
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Back to first principles. . .
Standard approach assumes single global FLRW frame
plus Newtonian perturbations

In absence of exact background symmetries,
Newtonian approximation requires a weak field
approximation about suitable static Minkowski frame

What is the largest scale on which the Strong
Equivalence Principle can be applied?

Need to address Mach’s principle: “Local inertial frames
are determined through the distributions of energy and
momentum in the universe by some weighted average
of the apparent motions”

How does coarse-graining affect relative calibration of
clocks and rods, from local to global, to account for
average effects of gravity?
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What expands? Can’t tell!
t

Homogeneous isotropic volume expansion is locally
indistinguishable from equivalent motion in static
Minkowski space; on local scales

z ≃ v

c
≃ H0ℓr

c
, H0 =

ȧ

a

∣

∣

∣

∣

t0

whether z + 1 = a0/a or z + 1 =
√

(c + v)/(c − v).
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What expands? Can’t tell!

For homogeneous isotropic volume expansion we
cannot tell whether particles are at rest in an expanding
space, or moving equivalently in a static Minkowski
space.

In the actual universe volume expansion decelerates
because of the average regional density of matter

Need to separate non-propagating d.o.f., in particular
regional density, from propagating modes: shape d.o.f.

Is there a Minkowski space analogue, like Galileo’s
ship, or Einstein’s elevator, even accounting for the
average density of matter? Yes. . .
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Semi-tethered lattice

Extend to decelerating motion over long time intervals
by Minkowski space analogue (semi-tethered lattice -
indefinitely long tethers with one end fixed, one free end
on spool, apply brakes syncronously at each site)

Brakes convert kinetic energy of expansion to heat and
so to other forms

Brake impulse can be arbitrary pre-determined function
of local proper time; but provided it is synchronous
deceleration remains homogeneous and isotropic: no
net force on any lattice observer.

Deceleration preserves inertia, by symmetry
15th Brazilian School on Cosmology and Gravitation, August 2012 – p.45/143



Thought experiments

PRD 78, 084032
(2008)

t

more deceleration
less deceleration

t i

t0

Thought experiment
equivalent situations:

SR: observers in disjoint regional semi-tethered lattices
volume decelerate at different rates

Those who decelerate more age less
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Thought experiments

PRD 78, 084032
(2008)

less dense
more dense

t last−scattering

t

gradient in <R>

average t = const

Thought experiment
equivalent situations:

GR: regions of different density have different volume
deceleration (for same initial conditions)

Those in denser region age less
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Cosmological Equivalence Principle

At any event, always and everywhere, it is possible to
choose a suitably defined spacetime neighbourhood,
the cosmological inertial region, in which average
motions (timelike and null) can be described by
geodesics in a geometry which is Minkowski up to
some time-dependent conformal transformation,

ds2
CIF

= a2(η)
[

−dη2 + dr2 + r2dΩ2
]

,

Defines Cosmological Inertial Frame (CIF)

Accounts for regional average effect of density in terms
of frames for which the state of rest in an expanding
space is indistinguishable from decelerating expansion
of particles moving in a static space
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Finite infinity

θ<0Collapsing Expanding

Finite infinity <θ>=0

<θ>=0 θ>0

θ>0

Virialized

Define finite infinity, “fi ” as boundary to connected
region within which average expansion vanishes 〈θ〉 = 0
and expansion is positive outside.

Shape of fi boundary irrelevant (minimal surface
generally): could typically contain a galaxy cluster.
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Cosmic “rest frame”

Patch together CIFs for observers who see an isotropic
CMB by taking surfaces of uniform volume expansion

〈 1

ℓr(τ)

dℓr(τ)

dτ
〉 =

1

3
〈θ〉1 =

1

3
〈θ〉2 = · · · = H̄(τ)

Average over regions in which (i) spatial curvature is
zero or negative; (ii) space is expanding at the
boundaries, at least marginally.

Solves the Sandage–de Vaucouleurs paradox implicitly.

Voids appear to expand faster; but canonical rate τv

faster, locally measured expansion can still be uniform.

Global average Hav on large scales with respect to any
one set of clocks may differ from H̄
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Better formalism?

CEP should be associated with a statistical geometrical
gauge principle

Equivalent of general covariance for cosmological
relativity, determined by initial state of universe

Expect equivalent descriptions of internal d.o.f. of
coarse-grained cell: (i) Buchert description; (ii) minimal
shear description; (iii) uniform Hubble flow (CMC)
description. . .

Since more than one geometrical description is
possible, patching goes beyond junction conditions for
geometries with prescribed Tµν

Principled “modification” of general relativity
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Lecture 3

The timescape cosmology
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Two/three scale model
Split spatial volume V = Viā

3 as disjoint union of
negatively curved void fraction with scale factor av and
spatially flat “wall” fraction with scale factor aw.

ā3 = fwiaw
3 + fviav

3 ≡ ā3(fw + fv)

fw ≡ fwiaw
3/ā3, fv ≡ fviav

3/ā3

fvi = 1 − fwi is the fraction of present epoch horizon
volume which was in uncompensated underdense
perturbations at last scattering.

H̄(t) =
˙̄a

ā
= fwHw + fvHv; Hw ≡ 1

aw

daw

dt
, Hv ≡

1

av

dav

dt

Here t is the Buchert time parameter, considered as a
collective coordinate of dust cell coarse-grained at SSH.
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Phenomenological lapse functions
According to Buchert average variance of θ will include
internal variance of Hw relative to Hv.
Note hr ≡ Hw/Hv < 1.

Buchert time, t, is measured at the volume average
position: locations where the local Ricci curvature
scalar is the same as horizon volume average

In timescape model, rates of wall and void centre
observers who measure an isotropic CMB are fixed by
the uniform quasilocal Hubble flow condition, i.e.,

1

ā

dā

dt
=

1

aw

daw

dτw

=
1

av

dav

dτv

; or H̄(t) = γ̄wHw = γ̄vHv

where γ̄v = dt
dτv

, γ̄w = dt
dτw

= 1 + (1 − hr)fv/hr, are
phenomenological lapse functions (NOT ADM lapse).
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Other ingredients
〈R〉 = kv/av

3 = kvfvi
2/3fv

1/3/ā3 since kw = 0

Assume that average shear in SSH cell vanishes; more
precisely neglect Q within voids and walls separately

〈δθ2〉w = 3
4〈σ2〉w 〈δθ2〉v = 3

4〈σ2〉v

Justification: for spherical voids expect 〈σ2〉 = 〈ω2〉 = 0;
for walls expect 〈σ2〉 and 〈ω2〉 largely self-canceling.

Only remaining backreaction is variance of relative
volume expansion of walls and voids

Q = 6fv(1 − fv) (Hv − Hw)2 =
2ḟv

2

3fv(1 − fv)

Solutions known for: dust (DLW 2007);
dust + Λ (Viaggiu, 2012), taking γ̄w = γ̄v = 1;
dust + radiation (Duley, Nazer + DLW, in preparation)
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Bare cosmological parameters

Buchert equations for volume averaged observer, with
fv(t) = fviav

3/ā3 (void volume fraction) and kv < 0

Ω̄M + Ω̄R + Ω̄k + Ω̄
Q

= 1,

ā−6∂t

(

Ω̄
Q

H̄
2
ā6
)

+ ā−2∂t

(

Ω̄kH̄
2
ā2
)

= 0 .

where the bare parameters are

Ω̄M =
8πGρ̄

M0
ā3
0

3H̄
2
ā3

, Ω̄R =
8πGρ̄

R0
ā4
0

3H̄
2
ā4

,

Ω̄k =
−kvfvi

2/3fv
1/3

ā2H̄
2

, Ω̄
Q

=
−ḟv

2

9fv(1 − fv)H̄
2

.
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Dust model

Specialize to dust only; in fact Ω̄R is negligible by the
time Ω̄

Q
is significant, so this is good enough. Solution

behaves like Einstein-de Sitter at early times, with fv

tiny and clock differences negligible.

Buchert equations, in terms of bare (volume average)
quantities are then

˙̄a
2

ā2
+

ḟv

2

9fv (1 − fv)
− α2fv

1/3

ā2
=

8πG

3
ρ̄
0

ā3
0

ā3
,

f̈v +
ḟv

2
(2fv − 1)

2fv (1 − fv)
+ 3

˙̄a

ā
ḟv −

3α2fv
1/3 (1 − fv)

2ā2
= 0 ,

where α2 = −kvfvi
2/3.
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General exact solution PRL 99, 251101
Irrespective of physical interpretation the two scale
Buchert equation can be solved exactly

aw= aw0t
2/3

aw0 ≡ ā0

[

9
4fwi

−1(1 − ǫi) Ω̄M0H̄0

2
]1/3

; Cǫ ≡
ǫiΩ̄M0fv0

1/3

Ω̄k0

√

u(u + Cǫ) − Cǫ ln

(

∣

∣

∣

∣

u

Cǫ

∣

∣

∣

∣

1
2

+

∣

∣

∣

∣

1 +
u

Cǫ

∣

∣

∣

∣

1
2

)

=
α

ā0

(t + tǫ)

where u ≡ fv
1/3ā/ā0 = fvi

1/3av/ā0, α = ā0H̄0Ω̄
1/2
k0 /fv0

1/6,
and constraints relate many constants.

4 independent parameters: e.g., H̄0, fv0, ǫi, fvi.
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Tracker solution limit
Parameters ǫi and fvi should be restricted by power
spectrum at last scattering, e.g.,

(

δρ

ρ

)

Hi

= fvi

(

δρ

ρ

)

vi

∼−10−6 to − 10−5

E.g., fvi ∼ 10−3, (δρ/ρ)vi ∼−10−3; or fvi ∼−10−2,
(δρ/ρ)vi ∼−10−4; or fvi ∼ 3 × 10−3, (δρ/ρ)vi ∼−3 × 10−3.

The general solution possesses a tracking limit,
equivalent to the exact solution with ǫi = 0, tǫ = 0, with
av = av0t (i.e., voids expand like Milne solution in t)

Tracker reached within 1% by redshift z ∼ 37 for
reasonable priors

Effectively, there are only two free parameters
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Tracker solution
PRL 99 (2007) 251101:

ā =
ā0(3H̄0t)

2/3

2 + fv0

[

3fv0H̄0t + (1 − fv0)(2 + fv0)
]1/3

fv =
3fv0H̄0t

3fv0H̄0t + (1 − fv0)(2 + fv0)
,

Other parameters (drop subscript w on γ̄w):

γ̄ = 1 + 1
2fv = 3

2H̄t

Ω̄M =
4(1 − fv)

(2 + fv)2
; Ω̄k =

9fv

(2 + fv)2
; Ω̄

Q
=

−fv (1 − fv)

(2 + fv)2

τw = 2
3t +

2(1 − fv0)(2 + fv0)

27fv0H̄0

ln

(

1 +
9fv0H̄0t

2(1 − fv0)(2 + fv0)

)
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Physical interpretation

As pointed out by Ishibashi and Wald, need to relate
average quantities to physical observables

My interpretation assumes coarse–graining of dust at
SSH; Buchert average domain D is horizon volume.

Uniform quasi–local Hubble flow below this scale;
volume average time, t, and average curvature, 〈R〉, not
local observable for all isotropic observers

Observers within galaxies assumed to be within
spatially flat finite infinity regions with geometry

ds2
fi = −dτ2

w + aw
2(τw)

[

dη2
w + η2

wdΩ2
]

Determine dressed cosmological parameters, as if local
clocks and rulers were extended to whole universe
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Past light cone average

Interpret solution of Buchert equations by radial null
cone average

ds2 = −dt2 + ā2(t) dη̄2 + A(η̄, t) dΩ2,

where
∫ η̄

H

0 dη̄ A(η̄, t) = ā2(t)Vi(η̄H)/(4π).

LTB metric but NOT an LTB solution
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Physical interpretation
Conformally match radial null geodesics of spherical
Buchert geometry to those of finite infinity geometry
with uniform local Hubble flow condition
dt = ā dη̄ and dτw = awdηw. But dt = γ̄dτw and
aw= fwi

−1/3 (1 − fv) ā. Hence on radial null geodesics

dηw =
fwi

1/3dη̄

γ̄ (1 − fv)
1/3

Define ηw by integral of above on radial null-geodesics.

Extend spatially flat wall geometry to dressed geometry

ds2 = −dτ2
w + a2(τw)

[

dη̄2 + r2
w(η̄, τw) dΩ2

]

where rw ≡ γ̄ (1 − fv)
1/3 fwi

−1/3ηw(η̄, τw), a = ā/γ̄.
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Dressed cosmological parameters
N.B. The extension is NOT an isometry

N.B. ds2
fi = −dτ2

w + aw
2(τw)

[

dη2
w + η2

wdΩ2
]

→ ds2 = −dτ2
w + a2

[

dη̄2 + r2
w(η̄, τw) dΩ2

]

Extended metric is an effective “spherical Buchert
geometry” adapted to wall rulers and clocks.

Since dη̄ = dt/ā = γ̄ dτw/ā = dτw/a, this leads to dressed
parameters which do not sum to 1, e.g.,

ΩM = γ̄3Ω̄M .

Dressed average Hubble parameter

H =
1

a

da

dτw

=
1

ā

dā

dτw

− 1

γ̄

dγ̄

dτw
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Dressed cosmological parameters
H is greater than wall Hubble rate; smaller than void
Hubble rate measured by wall (or any one set of) clocks

H̄(t) =
1

ā

dā

dt
=

1

av

dav

dτv

=
1

aw

daw

dτw

< H <
1

av

dav

dτw

For tracker solution H = (4fv
2 + fv + 4)/6t

Dressed average deceleration parameter

q =
−1

H2a2

d2a

dτ2
w

Can have q < 0 even though q̄ = −1

H̄
2
ā2

d2ā
dt2 > 0; difference

of clocks important.
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Apparent cosmic acceleration

Volume average observer sees no apparent cosmic
acceleration

q̄ =
2 (1 − fv)

2

(2 + fv)2
.

As t → ∞, fv → 1 and q̄ → 0+.

A wall observer registers apparent cosmic acceleration

q =
− (1 − fv) (8fv

3 + 39fv
2 − 12fv − 8)

(

4 + fv + 4fv
2
)2 ,

Effective deceleration parameter starts at q∼ 1
2 , for

small fv; changes sign when fv = 0.58670773 . . ., and
approaches q → 0− at late times.
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Cosmic coincidence problem solved
Spatial curvature gradients largely responsible for
gravitational energy gradient giving clock rate variance.

Apparent acceleration starts when voids start to open.
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Redshift, luminosity distance
Cosmological redshift (last term tracker solution)

z + 1 =
a

a0

=
ā0γ̄

āγ̄
0

=
(2 + fv)fv

1/3

3fv0
1/3H̄0t

=
24/3t1/3(t + b)

fv0
1/3H̄0t(2t + 3b)4/3

,

where b = 2(1 − fv0)(2 + fv0)/[9fv0H̄0]

Dressed luminosity distance relation dL = (1 + z)D

where the effective comoving distance to a redshift z is
D = a0rw, with

rw = γ̄ (1 − fv)
1/3
∫ t0

t

dt′

γ̄(t′)(1 − fv(t′))1/3ā(t′)
.
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Redshift, luminosity distance
Perform integral for tracker solution

DA =
D

1 + z
=

dL

(1 + z)2
= (t)

2
3

∫ t
0

t

2dt′

(2 + fv(t′))(t′)2/3

= t2/3(F(t0) −F(t))

where

F(t) = 2t1/3 +
b1/3

6
ln

(

(t1/3 + b1/3)2

t2/3 − b1/3t1/3 + b2/3

)

+
b1/3

√
3

tan−1

(

2t1/3 − b1/3

√
3 b1/3

)

.

t given implicitly in terms of z by previous relation
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Sample Hubble diagram with SneIa

0 0.5 1 1.5 2
30

32

34

36

38

40

42

44

46

48

z

µ

Type Ia supernovae of Riess07 Gold data set fit with χ2

per degree of freedom = 0.9

Statistically indistinguishable from ΛCDM.
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Void fraction, lapse function

The void fraction, fv, (solid line), and lapse of volume–average

observers with respect to wall observers, γ̄, (dotted line) as a function
of redshift for the TS model with H0 = 62.0 km/s/Mpc, γ̄

0
= 1.38,

fv0 = 0.759.
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CEP relative deceleration scale

(i)

0.4

0.6

0.8

1.0

1.2

0 0.05 0.1 0.15 0.2 0.25

−10
10   m/s2

z

α

(ii)

0.02

0.04

0.06

0.08

0.10

0.12

0 2 4 6 8 10z

α /(Hc)

/(Hc)α

By equivalence principle the instantaneous relative deceleration of backgrounds gives an

instantaneous 4-acceleration of magnitude α = H
0
cγ̄ ˙̄γ/(

p

γ̄2
− 1) beyond which weak

field cosmological general relativity will be changed from Newtonian expectations: (i) as
absolute scale nearby; (ii) divided by Hubble parameter to large z.

For z <∼ 0.25, coincides with empirical MOND scale
α0 = 1.2+0.3

−0.2 × 10−10 ms−2h2
75

= 8.1+2.5
−1.6 × 10−11ms−2 for

H0 = 61.7 km/s/Mpc.
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Age of universe

The expansion age τw(z) for observers in galaxies (solid) and t(z)
for volume-average observers (dashed) for previous TS model.
Comparison ΛCDM model: H0 = 71.0 km/s/Mpc, ΩM0 = 0.268,

ΩΛ0 = 0.732 (dot–dashed). Note: τw0 = 14.6 Gyr, t0 = 18.6 Gyr.
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Alleviation of age problem

Old structures seen at large redshifts are a challenge
for ΛCDM.

Problem alleviated here; expansion age is increased, by
an increasingly larger relative fraction at larger
redshifts, e.g., for best–fit values
ΛCDM τ = 0.85 Gyr at z = 6.42, τ = 0.365 Gyr at z = 11
TS τ = 1.14 Gyr at z = 6.42, τ = 0.563 Gyr at z = 11

Present age of universe for best-fit is τ0 ≃ 14.7 Gyr for
wall observer; t0 ≃ 18.6 Gyr for volume–average
observer.

Would the under–emptiness of voids in Newtonian
N-body simulations may be an issue in open universe
with bare parameters Ω̄M = 0.125, t0 ≃ 18.6 Gyr?

15th Brazilian School on Cosmology and Gravitation, August 2012 – p.74/143



Magnitude of backreaction
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Magnitude of Ω̄
Q

determines departure from FLRW
evolution: it is 4.2% at most

There is a closest FLRW universe: open model with
Ω̄M0 = 0.125, t0 = 18.6 Gyr.
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Lecture 4

Observational tests of

the timescape cosmology
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Test 1: SneIa luminosity distances

Difference of model apparent magnitude and that of
empty Milne universe of same H0 = 61.7 km/s/Mpc, for
Riess 2007 “gold data”. Note: residual depends on the
expansion rate of the Milne universe subtracted (2σ
limits on H0 indicated by whiskers)
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ComparisonΛCDM models

Best-fit spatially flat ΛCDM

H
0

= 62.7 km/s/Mpc,

Ω
M0

= 0.34, Ω
Λ0

= 0.66

Riess astro-ph/0611572, p. 63

H
0

= 65 km/s/Mpc,

Ω
M0

= 0.29, Ω
Λ0

= 0.71
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Test 1: SneIa luminosity distances

Two free parameters H0 versus ΩM0 (dressed shown here),
or alternatively “bare values”, constrained by Riess07 Gold
data fit. (Normalization of H0 not constrained by SneIa.)
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Best fit parameters

Hubble constant H0 + ∆H0 = 61.7+1.2
−1.1 km/s/Mpc

present void volume fraction fv0 = 0.76+0.12
−0.09

bare density parameter Ω̄M0 = 0.125+0.060
−0.069

dressed density parameter ΩM0 = 0.33+0.11
−0.16

non–baryonic dark matter / baryonic matter mass ratio
(Ω̄M0 − Ω̄B0)/Ω̄B0 = 3.1+2.5

−2.4

bare Hubble constant H̄0 = 48.2+2.0
−2.4 km/s/Mpc

mean lapse function γ̄
0

= 1.381+0.061
−0.046

deceleration parameter q0 = −0.0428+0.0120
−0.0002

wall age universe τ0 = 14.7+0.7
−0.5 Gyr
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Smale + DLW, MNRAS 413 (2011) 367
SALT/SALTII fits (Constitution,SALT2,Union2) favour
ΛCDM over TS: ln BTS:ΛCDM = −1.06,−1.55,−3.46

MLCS2k2 (fits MLCS17,MLCS31,SDSS-II) favour TS
over ΛCDM: ln BTS:ΛCDM = 1.37, 1.55, 0.53

Different MLCS fitters give different best-fit parameters;
e.g. with cut at statistical homogeneity scale, for
MLCS31 (Hicken et al 2009) ΩM0 = 0.12+0.12

−0.11;
MLCS17 (Hicken et al 2009) ΩM0 = 0.19+0.14

−0.18;
SDSS-II (Kessler et al 2009) ΩM0 = 0.42+0.10

−0.10

Supernovae systematics (reddening/extinction, intrinsic
colour variations) must be understood to distinguish
models

Foregrounds, and inclusion of SneIa below SSH an
important issue (more in next lecture)
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Supernovae systematics
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CMB anisotropies

Power in CMB temperature anisotropies versus angular size of fluctuation on sky
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CMB temperature calibration
Volume average observers measure mean CMB
temperature

T̄ = γ̄−1T

where T is CMB temperature measured by wall
observers; T0 = 2.725 K, T̄ = 1.975 K.

Number density of photons at the volume average is

n̄γ =
2 ζ(3)

π2

(

kBT̄

~c

)3

=
nγ

γ̄3 ,

yielding n̄γ0 = 4.105 γ̄
0
−3 × 108 m−3 at present.

This is needed to calibrate light element abundances
from primordial nucleosynthesis.
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Photon to baryon ratio
Number density of baryons at the volume average is

n̄B =
3H̄

2
0Ω̄B0

8πG mp
=

11.2fBΩ̄M0h
2

(γ̄
0
− γ̄′

0
)2

m−3,

where γ̄′

0
≡ 1

H̄
0

dγ̄
dt

∣

∣

∣

t0
, mp is the proton mass,

fB ≡ Ω̄B0/Ω̄M0.

Hence the average photon to baryon ratio is

ηBγ =
n̄B

n̄γ
=

2.736 × 10−8fBΩ̄M0γ̄
3
0
h2

(γ̄
0
− γ̄′

0
)2

,

as compared to ηFLRW = 2.736 × 10−8fBΩMh2.
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Li abundance anomaly

(i) (ii)
Expected abundances for different values of the
parameter η10 ≡ 1010ηBγ (left), and measurements
(right) (Steigman 2006), with 1σ uncertainties.
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Li abundance anomaly

Big-bang
nucleosynthesis, light
element abundances
and WMAP with ΛCDM
cosmology.
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Resolution of Li abundance anomaly?

Prior to WMAP in 2003 favoured ratio was
ηBγ = 4.6–5.6 × 10−10; after WMAP ηBγ = 6.1+0.3

−0.2 × 10−10

Conventional dressed parameter ΩM0 = 0.33 for wall
observer means Ω̄M0 = 0.125 for the volume–average.

Conventional theory predicts the volume–average
baryon fraction – with old BBN favoured ηBγ:

Ω̄B0 ≃ 0.027–0.033; but this translates to a conventional
dressed baryon fraction parameter ΩB0 ≃ 0.072–0.088

The ratio of baryonic matter to non–baryonic dark
matter is increased to 1:3.

Need fit to 2nd acoustic peak to tighten ΩB0 further
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CMB – calibration of sound horizon
Physics at last–scattering same as perturbed
Einstein–de Sitter model. What is changed is relative
calibration between now and then.

Estimated proper distance to comoving scale of the
sound horizon at any epoch for volume–average
observer [x̄ = ā/ā0, so x̄dec = γ̄−1

0
(1 + zdec)

−1]

D̄s =
ā(t)

ā0

c√
3 H̄0

∫ x̄dec

0

dx̄
√

(1 + 0.75 Ω̄B0x̄/Ω̄γ0)(Ω̄M0x̄ + Ω̄R0)
,

For wall observer Ds(τ) = γ̄−1Ds

Volume–average observer measures lower mean CMB
temperature (T̄ 0 = T0/γ̄0

∼ 1.98 K, c.f. T0 ∼ 2.73 K in
walls)
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Test 2: Angular diameter of sound horizon

Parameters within the (ΩM0,H0) plane which fit the angular
scale of the sound horizon δ = 0.01 rad deduced for WMAP,
to within 2%, 4% and 6%, with ηBγ = 4.6–5.6 × 10−10.
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Test 3: Baryon acoustic oscillation scale

Parameters within the (Ωm,H0) plane which fit the effective
comoving baryon acoustic oscillation scale of 104h−1 Mpc,
as seen in 2dF, SDSS etc. Warning: crude estimate.
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Agreement of independent tests

Best–fit parameters: H0 = 61.7+1.2
−1.1 km/s/Mpc, Ωm = 0.33+0.11

−0.16

(1σ errors for SneIa only) [Leith, Ng & Wiltshire, ApJ 672
(2008) L91]
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Dressed “comoving distance”D(z)
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Best-fit TS model (black line) compared to 3 spatially flat

ΛCDM models: (i) best–fit to WMAP5 only (ΩΛ = 0.75);
(ii) joint WMAP5 + BAO + SneIa fit (ΩΛ = 0.72);
(iii) best flat fit to (Riess07) SneIa only (ΩΛ = 0.66).
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Dressed “comoving distance”D(z)

TS model closest to best–fit ΛCDM to SneIa only result
(ΩM0 = 0.34) at low redshift.

TS model closest to best–fit WMAP5 only result,
(ΩM0 = 0.249) at high redshift

Over the range 1 < z < 6.6 tested by gamma ray
bursters (GRBs) the TS model fits B. Schaefer’s sample
of 69 GRBs very slightly better than ΛCDM, not enough
to be statistically significant - PR Smale, MNRAS 418
(2011) 2779

Maximum difference in apparent magnitude between
TS model and LCDM is only 0.18–0.34 mag at z = 6.
Will need much data to get statistically significant test.
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Equivalent “equation of state”?
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wL =

2
3
(1 + z)

“

dD
dz

”−1
d2D
dz2

+ 1

Ω
M0

(1 + z)3H2
0

“

dD
dz

”2
− 1

A formal “dark energy equation of state” wL(z) for the best-fit TS model, fv0 = 0.76,

calculated directly from rw(z): (i) Ω
M0

= 0.33; (ii) Ω
M0

= 0.279.

Description by a “dark energy equation of state” makes
no sense when there’s no physics behind it; but average
value wL ≃ −1 for z < 0.7 makes empirical sense.
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Tests of “equation of state”

-4
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w
(z

)

z

Union
Constitution

Zhao and Zhang arXiv:0908.1568 find mild 95%
evidence in favour of w(z) crossing the phantom divide
from w > −1 to w < −1 in the range 0.25 < w < 0.75”

Serra et al. arXiv:0908.3186 find “no evidence” of
dynamical dark energy, but their analysis (above) also
consistent with TS
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Sahni, Shafieloo and StarobinskyOm(z)

Sahni, Shafieloo and Starobinsky propose a dark
energy diagnostic

Om(z) =

H2(z)
H2

0

− 1

(1 + z)3 − 1
,

For FLRW models OM(z) = ΩM0 for ΛCDM ∀z since

Om(z) = ΩM0 + (1 − ΩM0)
(1 + z)3(1+w) − 1

(1 + z)3 − 1
.

but there are differences for other dark energy models.

Note: Om(z) → ΩM0 at large z for all w.
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Om(z) test
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Om

Om(z) for the tracker solution with best–fit value fv0 = 0.762 (solid line), and 1σ limits

Om(0) = 2
3 H ′|0 = 2(8fv0

3
−3fv0

2+4)(2+fv0)

(4fv0
2+fv0+4)2

is larger than for

DE models

For large z, does not asymptote to ΩM0 but to

Om(∞) = 2(1−fv0)(2+fv0)
3

(4fv0
2+fv0+4)2

) < ΩM0 if fv0 > 0.25.
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Sahni, Shafieloo and StarobinskyOm(z)
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(i) Om(z) fit by Shafieloo et al. to SN+BAO+CMB with w(z)=−
1
2
[1+tanh((z−zt)∆)];

(ii) TS model prediction for Om(z) (NOT same w(z)) – best-fit and 1σ uncertainties

Shafieloo et al., arxiv:0903.5141, fit Om(z) with hint that
“dark energy is decaying”.

Intercept Om(0) agrees well with TS model expectation
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Alcock–Paczýnski test
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for the tracker solution with fv0 = 0.762 (solid line) is compared to three

spatially flat ΛCDM models with the same values of (Ω
M0

, Ω
Λ0

) as in earlier figures

For a comoving standard ruler subtending and angle θ,

f
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=
1

z

∣

∣

∣

∣
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∣
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∣

=
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z
=
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(
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)
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Baryon Acoustic Oscillation test function
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H0DV = H0Df
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AP
for the tracker solution with fv0 = 0.762 (solid line) is compared

to three spatially flat ΛCDM models with the same values of (Ω
M0

, Ω
Λ0

) as in earlier

figures

BAO tests of galaxy clustering typically consider

DV =

[

zD2

H(z)

]1/3

= Df−1/3
AP

.
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Gaztañaga, Cabre and Hui 0807.3551

z = 0.15-0.47 z = 0.15-0.30 z = 0.40-0.47
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Gaztañaga, Cabre and Hui 0807.3551

redshift ΩM0h
2 ΩB0h

2 ΩC0/ΩB0

range
0.15-0.30 0.132 0.028 3.7
0.15-0.47 0.12 0.026 3.6
0.40-0.47 0.124 0.04 2.1

WMAP5 fit to ΛCDM: ΩB0 ≃ 0.045, ΩC0/ΩB0 ≃ 6.1

GCH bestfit: ΩB0 = 0.079 ± 0.025, ΩC0/ΩB0 ≃ 3.6.

TS prediction ΩB0 = 0.080+0.021
−0.013, ΩC0/ΩB0 = 3.1+1.8

−1.3 with
match to WMAP5 sound horizon within 4%.

Blake et al (2012) now claim Alcock–Paczyński
measurement in WiggleZ survey, fits ΛCDM well
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H(z)/H0
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(ii)
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z

H/H0

H(z)/H0 for fv0 = 0.762 (solid line) is compared to three spatially flat ΛCDM models: (i)
(Ω

M0
, Ω

Λ0
) = (0.249, 0.751); (ii) (Ω

M0
, Ω

Λ0
) = (0.279, 0.721) (iii)

(ΩM0, ΩΛ0) = (0.34, 0.66);.

Function H(z)/H0 displays quite different characteristics

For 0 < z <∼ 1.7, H(z)/H0 is larger for TS model, but
value of H0 assumed also affects H(z) numerical value
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Redshift time drift (Sandage–Loeb test)

H(z)/H0 measurements are model dependent.
However,

1

H0

dz

dτ
= 1 + z − H

H0

For ΛCDM

1

H0

dz

dt
= (1 + z) −

√

ΩM0(1 + z)3 + ΩΛ0 + Ωk0(1 + z)2.

For TS model

1

H0

dz

dτ
= 1 + z − 3

(

2t2 + 3bt + 2b2
)

H0t (2t + 3b)2
,

where t is given implicitly in terms of z.
15th Brazilian School on Cosmology and Gravitation, August 2012 – p.105/143



Redshift time drift (Sandage–Loeb test)
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for the TS model with fv0 = 0.762 (solid line) is compared to three spatially flat

ΛCDM models with the same values of (Ω
M0

, Ω
Λ0

) as in previous figures.

Measurement is extremely challenging. May be feasible
over a 10–20 year period by precision measurements of
the Lyman-α forest over redshift 2 < z < 5 with next
generation of Extremely Large Telescopes
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Clarkson, Bassett and Lu homogeneity test

For FLRW equations, irrespective of dark energy model

Ωk0 =
B

[H0D(z)]2
= const

where B(z) ≡ [H(z)D′(z)]2 − 1. Thus

C(z) ≡ 1 + H2(DD′′ − D′2) + HH ′DD′ = 0

for any homogeneous isotropic cosmology, irrespective
of DE.

Clarkson, Bassett and Lu [PRL 101 (2008) 011301] call
this a “test of the Copernican principle”. However, it is
merely a test of (in)homogeneity.

15th Brazilian School on Cosmology and Gravitation, August 2012 – p.107/143



Clarkson, Bassett and Lu homogeneity test
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(a) B ≡ [H(z)D′(z)]2 − 1 for TS model with fv0 = 0.762 (solid line)

and two ΛCDM models (dashed lines): (i) ΩM0 = 0.28, ΩΛ0 = 0.71,

Ωk0 = 0.01; (ii) ΩM0 = 0.28, ΩΛ0 = 0.73, Ωk0 = −0.01; (b) C(z).

Will give a powerful test of FLRW assumption in future,
with quantitative different prediction for TS model.
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Lecture 5

Variance of the Hubble flow
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Apparent Hubble flow variance
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Result: arXiv:1201.5371v2

CMB dipole usually interpreted as result of a boost w.r.t.
cosmic rest frame, composed of our motion w.r.t.
barycentre of Local Group plus a motion of the Local
Group of 635 km s−1 towards ? Great Attractor?
Shapley Concentration ? ??

But Shapley Supercluster, is at >∼ 138h−1Mpc > Scale of
Statistical Homogeneity

We find Hubble flow is significantly more uniform in rest
frame of LG rather than standard “rest frame of CMB”

Suggests LG is not moving at 635 km s−1; but ∃ 0.5%
foreground anisotropy in distance-redshift relation from
foreground density gradient on<∼ 65h−1Mpc scales
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Peculiar velocity formalism
Standard framework, FLRW + Newtonian perturbations,
assumes peculiar velocity field

vpec = cz − H0r

generated by

v(r) =
H0Ω

0.55
M0

4π

∫

d3
r
′ δm(r′)

(r′ − r)

|r′ − r|3

After 3 decades of work, despite contradictory claims,
the v(r) does not to converge to LG velocity w.r.t. CMB

Agreement on direction, not amplitude or scale (Lavaux
et al 2010; Bilicki et al 2011; . . . )

Suggestions of bulk flows inconsistent with ΛCDM
(Watkins, Feldman, Hudson 2009. . . )
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Spherical averages

Determine variation in Hubble flow by determining
best-fit linear Hubble law in spherical shells
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N. Li & D. Schwarz, PRD 78, 083531
HST key data: 68 points, single shell (all points within r Mpc
as r varied) – correlated result
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Analysis of COMPOSITE sample

Use COMPOSITE sample: Watkins, Feldman &
Hudson 2009, 2010, with 4,534 galaxy redshifts and
distances, includes most large surveys to 2009

Distance methods: Tully Fisher, fundamental plane,
surface brightness fluctuation; 103 supernovae
distances.

average in independent spherical shells

Compute Hs in 12.5h−1Mpc shells; combine 3 shells
> 112.5h−1Mpc

Use data beyond 156.25h−1Mpc as check on H0

normalisation – COMPOSITE sample is normalized to
100h km/s/Mpc
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(a) 1: 0− 12.5 h
−1 Mpc N = 92. (b) 2: 12.5− 25 h

−1 Mpc N = 505.

(c) 3: 25− 37.5 h
−1 Mpc N = 514. (d) 4: 37.5− 50 h

−1 Mpc N = 731.

(e) 5: 50− 62.5 h
−1 Mpc N = 819. (f) 6: 62.5− 75 h

−1 Mpc N = 562.

(g) 7: 75− 87.5 h
−1 Mpc N = 414. (h) 8: 87.5− 100 h

−1 Mpc N = 304.

(i) 9: 100− 112.5 h
−1 Mpc N = 222. (j) 10: 112.5− 156.25 h

−1 Mpc N = 280.

(k) 11: 156.25− 417.4 h
−1 Mpc N = 91.
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Radial varianceδHs = (Hs − H0)/H0

Two choices of shell boundaries (closed and open
circles); for each choice data points uncorrelated

Analyse linear Hubble relation in rest frame of CMB;
Local Group (LG); Local Sheet (LS). LS result very
close to LG result.
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Bayesian comparison of uniformity
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Scale: Kass & Raftery (1995)

Hubble flow more uniform in LG frame than CMB frame
with very strong evidence
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But why try the LG frame?

From viewpoint of the timescape model and in particular
the “Cosmological Equivalence Principle” in bound
systems the finite infinity region (or matter horizon) is
the standard of rest

θ<0Collapsing Expanding

Finite infinity <θ>=0

<θ>=0 θ>0

θ>0

Virialized
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Boosts and spurious monopole variance

Hs determined by linear regression in each shell

Hs =

(

Ns
∑

i=1

(czi)
2

σ2
i

)(

Ns
∑

i=1

cziri

σ2
i

)−1

,

Under boost czi → cz′i = czi + v cos φi for uniformly
distributed data, linear terms cancel on opposite sides
of sky

H ′
s − Hs ∼

(

Ns
∑

i=1

(v cos φi)
2

σ2
i

)(

Ns
∑

i=1

cziri

σ2
i

)−1

=
〈(v cos φi)

2〉
〈cziri〉

∼ v2

2H0〈r2
i 〉
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Angular variance

Two approaches; fit

1. McClure and Dyer (2007) method – can look at higher
multipoles

Hα =

∑N
i=1 Wi α czi r

−1
i

∑N
j=1 Wj α

where with cos θi = ~rgrid · ~ri, σθ = 25◦ (typically)

Wi α =
1√

2πσθ

exp
(−θ2

i

2σ2
θ

)

2. Simple dipole
cz

r
= H0 + b cos φ
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McClure-Dyer Gaussian window average

Actually for COMPOSITE sample better to fit

H−1
α =

∑N
i=1 Wi α ri (czi)

−1

∑N
j=1 Wj α

,

Wi α =
1

σ2
H−1

i

√
2πσθ

exp
(−θ2

i

2σ2
θ

)

, σH−1
i

=
σi

czi

Canonical value of σθ = 25◦ used, but varied
15◦ < σθ < 40◦ with no significant change. However, 2σθ

must be greater than Zone of Avoidance diameter.

15th Brazilian School on Cosmology and Gravitation, August 2012 – p.122/143



Hubble variance: CMB frame
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Hubble variance: LG frame
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Angular uncertainties LG frame
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Hubble variance quadrupole/dipole ratios
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Value of β in cz
r = H0 + β cos φ
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Value of β in cz
r = H0 + β cos φ
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Dipole direction

CMB frame: direction (ℓd, bd) remains within 1σ of the
bulk flow direction (ℓ, b) = (287◦ ± 9◦, 8◦ ± 6◦) found by
Watkins et al (2009) for 20h−1 ≤ ro ≤ 115h−1Mpc; for
largest values remains consistent with bulk flow
direction (ℓ, b) = (319◦ ± 18◦, 7◦ ± 14◦) of Turnbull et al
(2012)

CMB dipole drops to minimum at 40h−1Mpc but then
increases and remains 4.0–7.0σ from zero.

LG frame: For 20h−1 <∼ ro <∼ 45h−1Mpc while the dipole
is strong, direction is consistently in range
(ℓd, bd) = (83◦ ± 6◦,−39◦ ± 3◦) but angular position then
wanders once magnitude reduced to residual levels.
For ro >∼ 80h−1Mpc the typical position of residual dipole
differs from that inner dipole by 80◦ – 100◦ in angle ℓ.
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Correlation with residual CMB dipole

Digitize skymaps with HEALPIX, compute

ρHT =

√

Np
∑

α σ̄−2
α (Hα − H̄)(Tα − T̄ )

√

[
∑

α σ̄−2
α

] [
∑

α σ̄−2
α (Hα − H̄)2

] [
∑

α(Tα − T̄ )2
]

ρHT = −0.92, (almost unchanged for 15◦ < σθ < 40◦)

Alternatively, t-test on raw data: null hypothesis that
maps uncorrelated is rejected at 24.4σ.

15th Brazilian School on Cosmology and Gravitation, August 2012 – p.131/143



Correlation with CMB dipole as ro varied
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Redshift-distance anisotropy

As long as T ∝ 1/a, where a0/a = 1 + z for some
appropriate average, not necessarily FLRW, then small
change, δz, in the redshift of the surface of photon
decoupling – due to foreground structures – will induce
a CMB temperature increment T = T0 + δT , with

δT

T0

=
−δz

1 + zdec

With zdec = 1089, δT = ±(5.77 ± 0.36) mK represents an
increment δz = ∓(2.31 ± 0.15) to last scattering

Proposal : rather than originating in a LG boost the
±5.77 mK dipole is due to a small anisotropy in the
distance-redshift relation on scales <∼ 65h−1Mpc.
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Redshift-distance anisotropy

For spatially flat ΛCDM

D =
c

H0

∫ 1+zdec

1

dx
√

ΩΛ0 + ΩM0x
3 + ΩR0x

4

For standard values ΩR0 = 4.15h−2 × 10−5, h = 0.72

ΩM0 = 0.25, find δD = ∓(0.33 ± 0.02) h−1Mpc;

ΩM0 = 0.30, find δD = ∓(0.32 ± 0.02) h−1Mpc;

timescape model similar.

Assuming that the redshift-distance relation anisotropy
is due to foreground structures within 65h−1Mpc then
±0.35h−1Mpc represents a ±0.5% effect
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Why a strong CMB dipole?

Ray tracing of CMB sky seen by off-centre observer in
LTB void gives |a10| ≫ |a20| ≫ |a30| (Alnes and
Amarzguioui 2006). E.g.,

a20

a10

=

√

4

15

(hin − hout)doff

2998 Mpc

where Hin 0 = 100hin km/s/Mpc,
Hout 0 = 100hout km/s/Mpc are Hubble constants
inside/outside void, doff = distance of the observer from
centre in Mpc.

Even for relatively large values doff = 50h−1Mpc and
hin − hout = 0.2, we have a20/a10

<∼ 1%.
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Towards a new formalism

For z < zhom define DL = (1 + z)D = (1 + z)2DA, where

D(z) = c

∫ z

0

dzs

Hs(zs)
.

where by linear regression in shells, zs < z ≤ zs + σz

Hs =

(

Ns
∑

i=1

(czi)
2

σ2
i

)(

Ns
∑

i=1

cziri

σ2
i

)−1

,

Smoothing scale σz greater than largest typical bound
structures, e.g., σz = 0.0042 for radial width 12.5h−1Mpc.

This gives the monopole, or spherical Hubble bubble
variance
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Towards a new formalism

For each shell redshift H(zs, θ, φ) − H(zs) will give
angular corrections which should lead to an expansion
of D(z, θ, φ) in multipoles

Convergence of Hubble flow variance to CMB dipole is
then obtained if
(i) dipole anisotropy in D converges to fixed value for
z > zconv;
(ii) residual anisotropy in D is of order order of
±0.33h−1Mpc, with exact value depending on the
cosmological model.

Standard peculiar velocity formalism and Hubble
variance formalism can then be directed compared and
tested
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Type Ia supernova systematics?
SneIa are standardizable candles only; two popular
methods SALT/SALT–II, and MLCS2k2 yield different
results when comparing cosmological results

Degeneracy between intrinsic colour variations and
reddening by dust

Hubble bubble is seen if RV = 3.1 (Milky way value); not
if RV = 1.7 (often includes data 0.015 <∼ z <∼ zconv ≃ 0.022)

Study independent of SneIa in 15 nearby galaxies gives
RV = 2.77 ± 0.41 (Finkelman et al 2010, 2011)

We find “Hubble bubble” independently of SneIa

N.B. SneIa are standardized by minimizing H0 residuals
in CMB frame. Union, Constitution compilations contain
many SneIa in range 0.015 <∼ z <∼ 0.022 where CMB
boost compensates partly.
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Large angle CMB anomalies?
Anomalies (varying significance) include

power asymmetry of northern/southern hemispheres

alignment of the quadrupole and octupole etc;

low quadrupole power;

parity asymmetry; . . .

Critical re-examination required; e.g.

light propagation through Hubble variance dipole
foregrounds may differ subtly from Lorentz boost dipole

dipole subtraction is an integral part of the map-making;
is galaxy correctly cleaned?

Freeman et al (2006): 1–2% error in dipole subtraction
may resolve the power asymmetry anomaly.
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Dark flow?
Controversial claim of bulk flows by Kashlinsky et al
(2009,2010) of 600 – 1, 000 km s−1 over large scales,
coinciding with LG boost direction, using the kinematic
Sunyaev-Zel’dovich effect

Claim to have subtracted all possible primordial dipoles,
quadrupoles, octupoles etc, so measurement is made
in “cluster rest frames”

Not seen by Osborne et al (2011), Hand et al (2012),
Lavaux et al (2012) who use different techniques

However, we note Kashlinsky modelling of cluster
temperature requires use of cluster redshift, and an
isotropic distance-redshift relation is assumed

a1m = a
KSZ
1m + a

TSZ
1m + a

CMB
1m +

σnoise√
Ncl
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Comments on ISW amplitude
Integrated Sachs–Wolfe (Rees-Sciama) effect needs
recomputation in timescape model

Correlation of radio-galaxies, voids and superclusters
etc with CMB positively detected and well established
(Boughn and Crittenden 2004, . . . Granett, Neyrinck and
Szapudi, 2008)

Amplitude of effect consistently of order 2σ greater than
LCDM prediction, or 3σ greater according to recent
detailed calculation of Nathadur, Hotchkiss and Sarkar
(2012)

Does departure of local Hubble flow variance from
ΛCDM expectations may give insights about features of
inhomogeneities at high redshift?
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Conclusion/Outlook
Variance of the Hubble flow over tens of megaparsecs
cannot be reduced to a boost; i.e. Eppur si espande!,
(Abramowicz et al 2007) space really is expanding

Large CMB angle anomalies, and map-making
procedures would need to be reconsidered ... are the
cold spot etc foreground artifacts, or primordial

“Dark flow” probably a systematic “error”

Frame of minimum variance Hubble flow variance frame
to be determined

Impact of rest frame choice, e.g., on nearby
measurements in setting distance scale etc, needs to
be re-examined

Opportunity to develop new formalism and approaches
to observational cosmology
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Conclusion
Apparent cosmic acceleration can be understood purely
within general relativity; by (i) treating geometry of
universe more realistically; (ii) understanding
fundamental aspects of general relativity which have not
been fully explored – quasi–local gravitational energy,
of gradients in spatial curvature etc.

“Timescape” model gives good fit to major independent
tests of ΛCDM with new perspectives on many puzzles
– e.g., primordial lithium abundance anomaly

Many tests can be done to distinguish from ΛCDM.

It is crucial that ΛCDM assumptions such as Friedmann
equation are not used in data reduction.

Many details – averaging scheme etc – may change,
but fundamental questions remain
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